
Wrapping superglobals to enforce input sanitizing

One of the cornerstones of secure web applications is input validation and sanitization.
Frequently this is an afterthought for developers, because PHP semantics do not actually
enforce it.
With the filter extension (since PHP 5.2) this would actually be quite effortless. But not
many open source projects have adopted it yet. While it is widely available and
technically one of the best solutions, the filter extension has a cumbersome API. And
here lies the problem. If developers are to be encouraged to always validate every
piece of input, it must be ultra simple to do so. Everything else leads to laziness-related
XSS worries.

This article presents a trick to force yourself, as developer, to always apply input
validation.
We just take the raw input arrays $_GET and $_POST away. - That's it.

Or not quite.
Superglobals can be replaced like every other variable. And this proposal is to replace
$_REQUEST and Co. with objects:

 $_REQUEST = new input($_REQUEST);
 $_GET = new input($_GET);
 $_POST = new input($_POST);

So, instead of accessing input variables the old-fashioned and may-or-may-not-forget-to-
sanitize-it way, there are now access methods. And these access methods conveniently
also provide data validation. Instead of $_GET[„category“] you'd write:

 $_GET->int(„category“)

Every variable that was an array entry before in $_GET or $_POST, can now be accessed
only through one of the sanitization methods. That's it, problem solved.

How so?
With having the old superglobal arrays available, you cannot ensure that every piece of
code accesses input variables carefully. You might have legacy libraries in your
codebase, or fellow developers who are less stringent about XSS security.
By taking the old arrays away, you can force a code review. There is no way around
checking every instance and deciding on an eligible sanitizing function.

However, unlike the PHP filter function, the rewrite is not as voluminous. The syntax is
rather close to the old. Instead of $_GET[] you have $_GET->int(). That's syntactically a
serious difference, but not when it comes to key strokes.

Important for security concepts is not only the technology at hand, but also the effort to
implement something in practice. This proposal hopefully strikes the right balance
between security inconvenience and developer laziness.

Implementation

Internally the superglobals wrapper is pretty easy to set up. As seen in the first
example, we just need to feed the old input arrays at instantiation. And we need a
couple of sanitization methods:

class input {

function __construct($IN) {
$this->vars = $IN;

}

function int($name) {
return intval($this->vars[$name]);

}

function name($name) {
return preg_replace("/[^\w_]+/", "", $this->vars[$name]);

}

Of course just the ->int() sanitization ain't gonna cut it for most webapps. So you'll get a
couple more basic validation/filtering features.

In the sample implementation attached below, there is a ->name() method, which for
example returns only alphanumeric characters for use as safe IDs or variable names.
Then you could have similar methods for ->text() sans html or even a ->regex() function
for filtering with custom ad-hoc criterias. Remember, that all of your application code
can access the input variables only via $_POST->format(„varname“) furthermore.

While its use is not recommended, there is also a simple ->sql() method, which allows
escaping in an otherwise totally amateurish way:

 mysql_query(„ SELECT * FROM app1 WHERE id='{$_GET->sql(article)}' „);

Note: I do not recommend this, or mysql_query() for that matter. Professional
developers should only ever use parameterized SQL. Or else get shot.

Advantages
The power of this method does not lie in the fancyness of variable access, but that
security woes for input data get multiplexed at a single point. Gone are the days of
possible insecure variable usage/access sprinkled throughout the code.

All the default methods just sanitize variables after basic patters. But since you now can
extend this with a simple adaption, reporting and security logging can now be added -
without having redundant code at every $_REQUEST access.
It's also helpful that special data formats can now have specific validation methods. As
example, following code in our „input“ wrapper class adds an application specific filter
for some article id:

class input {

function article($name) {
if (preg_match(„/^\w{5}\d{2}-\d{4}$/“, $a=$this->vars[$name])) {

return $a;
}
else { // scare message

die(„Invalid article id received. This catalogue error has been
logged. One of our administrators will look into this incident and contact you.“);

}
}

And within the e.g. web shop application, a couple of different article ids can be
verified like $_POST->article(„order“) && $_POST->article(„stock“). There is no need for
duplicating any verification or error handling code. And this can be reused in different
code paths or templates. But most importantly, input verification is handled were it
structurally belongs and not throughout the application logic.

<aside>Some people are inclined to always provide appropriate error messages for
invalid input. But this article is about sanitizing possibly manipulated HTTP content, not
user mishaps. Wrong user input in a form field is in fact the domain of the application
logic. But the OO input wrappers are strictly about preventing exploits.</aside>

One caveat here. You cannot always have a validation function. There are some inputs
which cannot be filtered by an regular expression or a few lines of code. Occasionally it's
the task of the application logic to bring form to data.
Hence there is a method called ->raw() which provides unfiltered access to input.
Needless to say, this must be used with caution. (But then, you could always reenable
the warning message in the ->raw() method for security audits.)

More, More, More

The sample implementation provides further sanitization wrappers. But it does not
implement them itself. Instead the magic __get() method delegates some queries to the
native PHP filter extension, which -as said earlier- does a good job at filtering.
It adds ->email() and ->url() or even ->float(). Whatever PHPs filter_input() provides, is
available through this wrapper class.

Moreover there is a neat little cheat that provides two alternative access syntaxes. As
seen before, you have to use $_GET->int(„varname“) for accessing an input variable.

But with the provided wrapper, you can also use $_GET->int[„varname“].

Seen the square brackets?! This makes the transition to the object-wrappers even easier.
Since you basically only have to add „->int“ between the old $_GET and [„varname“]
that's currently in your code.

A second additional syntax is $_POST->int->formfield. Yes, imagine that. A fully object-
style access to filtered input variables. The ->int-> here is the function ->int(). It looks
like an object, but it isn't. - Well actually it is, but whatever. It's only important that
the ->int() method gets called anyway.
So whatever custom filter method you add, you can access all sanitized input variables
through $_REQUEST->filter->inputvar or with the array method.

This adds so many levels of coolness to security.

Download

Get it here, before someone else does.

DOWNLOAD LINK

As said, this is just an example implementation. It is imperative that you adapt it for
your needs. Add validation methods for your specific application. You might want to
change the ->name() or ->text() behaviour even. Or at least remove the warning
message from the ->sql() escape filter.
It auto-initializes $_REQUEST, $_SERVER, $_GET, $_POST and $_COOKIE with the new
object-wrappers, but spares $_ENV and $_SESSION per default.

Test this approach on a new project with the $_GET->text() methods. For adapting an
existing codebase, you can try the $_REQUEST->int[„var“] syntax, just insert ->filter as
needed. You'll see that forcing a new syntax on an entire webapp takes time, but is a
more secure development methodology overall.

Btw, the code implicitely throws E_NOTICE messages. Did not work around this, because
I consider E_NOTICE not as proper error messages, but as _DEBUG hints. Loads of isset()
checks do not factually contribute to security IMO, but only to very imaginary code
cleanliness.
And if, you do want those debug hints whenever a variable is missing or misnamed. The
only problem with the input wrappers here is, that the notices don't carry the right line
numbers anymore as when you'd access a non-existant $_GET[] variable.

	Wrapping superglobals to enforce input sanitizing
	How so?
	Implementation
	Advantages
	More, More, More
	Download

